NEUROLOGICAL DISEASES WE COMMONLY SEE IN SMALL RUMINANTS

Paula Menzies, DVM, MPVM, Diplomate ECSRHM
Professor, Ruminant Health Management
Department Population Medicine
Ontario Veterinary College
University of Guelph

Sheep or Goats with Neurological Signs

• Common
 • Polioencephalomalacia
 • Listeriosis
• Uncommon but Reportable
 • Rabies
 • Scrapie

Sheep or Goats with Neurological Signs

• Uncommon but important at flock level
 • Tetanus
 • Copper deficiency
 • Many toxicoses (lead, organophosphate / organochlorine etc)
 • Parelaphostrongylus (deer meningeal worm)
 • Sarcocystosis
• Many common diseases also have neurological signs
 • E.g. enterotoxaemia, pregnancy toxaemia, MV / CAE
 • Brain and spinal abscesses can be sporadic, secondary to tail-docking or septicaemia or due to CLA

Polioencephalomalacia

• Presenting complaint
 • Usually a single case gets “called in”
 • Acting bizarre, blind
• Etiology
 • Thiamine deficiency (vitamin B1)
• Epidemiology
 • Dietary problem
 • High level of carbohydrate (grain) in diet, molasses
 • Change in microflora in rumen to bacteria which produce thiaminase
 • Some toxic plants (bracken fern, horsetail)
 • High levels of sulfur in water / diet
PEM – Clinical Findings

- Separates from group
- Stiff, stilted gait
- Opisthotonus
- Cortical blindness
 - Still has a normal pupillary light response
 - Oculomotor nerve intact
- Eventually cannot stand
- Down, spastic, convulsions
- Die in 1 to 2 days if not treated

Polioencephalomalacia

Phil Scott, Royal Dick Veterinary School, U of Edinburgh

PEM – Necropsy

- Cerebral / cerebellar edema
- Necrosis of grey matter – yellow pigmentation
- Fluorescence with UV light
PEM - Treatment

- Thiamine (vitamin B1)
- 10 to 20 mg/kg bw IM or SC TID for 3 days
 - Injectable products vary in concentration (75 mg/mL to 500 mg/mL)
- If treat early – response seen within a few hours
- If no response in 24 hrs, likely will not
- Flock level for at risk animals
 - 50 to 60 mg/head/day in feed
- If PEM due to high sulfur
 - Will not respond
- Regardless of hypotheses, treat SR neuro cases with thiamine.

Listeriosis

- Presenting complaint
 - Individual animal with cranial nerve deficit
- **Etiology**
 - Infection due to *Listeria monocytogenes*
- **Epidemiology**
 - Silage / haylage feeding
 - pH > 5.0
 - Contaminated with dirt / manure
 - Forages fed on ground
 - Bacteria found in environment, rodents, manure
 - 2 % common
 - Outbreak of 10% or higher may occur

Listeriosis - Pathogenesis

- Organism ingested and enters into blood stream or trigeminal nerve through superficial abrasions in oral cavity
- Incubation 10 to 21 days
- Microabscesses in brainstem

Listeriosis – Clinical Findings

- Febrile (> 40.0 C)
- Unilateral signs referable to cranial nerves
 - Circling, head tilt (vestibulo-cochlear n)
 - Forward propulsion
 - Trigeminal & facial n paralysis
 - Often very severe
 - High case fatality rate
- Sheep and goats more susceptible than cattle
- Neonates – uncommonly septicaemia
- Pregnant ewes and does – abortion & metritis
Listeriosis

- **Treatment**
 - Oxytetracycline, penicillin, trimethoprim-sulfa
 - Single injection of dexamethasone (1.1 mg/kg)
 - Extended nursing care
 - High case fatality rate

- **Control**
 - If outbreak (several cases over time)
 - Metaphylactic treatment with long acting oxytetracycline
 - Remove source but incubation at least 10 days
 - Silage & forage feeding management
 - Public health issue

Rabies

- Presenting complaint
 - Sheep / goat behaving bizarrely
- Reportable to
 - Local Public Health Unit if human exposure
 - If domestic animal exposure but no human – follow state rules
- Epidemiology
 - Usually on pasture but sometimes wildlife / cats in barn
 - Skunk, foxes, raccoons, bats
 - Disease ~ 2 weeks later
- Treat all neurological cases as if might be rabies
 - Even if low on your list of hypotheses
 - Wear water-proof gloves

Scrapie

- Presenting complaint
 - Sheep / goats acting bizarrely
- **Wasting**
- **Etiology**
 - Infectious prion but
 - Genetics determine expression of disease
 - Abnormal configuration of a normal protein (PrPsc)
 - Protease resistant
 - Presence of beta sheets
Scrapie - Epidemiology
- First case in Canada 1938 in Suffolk sheep imported from the UK
- First described in the UK in the 1732
- Reportable in Canada since 1945 but stigma forced disease underground
- In North America
 - Mostly associated with “black-face” sheep
 - Sporadic within an infected flock but level of infection may be high
 - Difficult to diagnose clinically

Scrapie - Pathogenesis
- PrP_{sc} disseminated throughout body
 - Neurological tissue
 - Lymphatic tissue and cells, including peripheral blood
 - Different than BSE!
 - Space-occupying accumulation

Scrapie - Transmission
- At lambing, PrP_{sc} present in large amount in placenta and birth fluids
- If ewe is infected and susceptible genetics
- If lamb born is susceptible as well
 - Contaminates lambing area
- If lambs born are resistant – no shedding
- Lambs infected at birth
 - Common lambing ground
- Adults infected grazing contaminated pastures, feed

Scrapie - Pathogenesis
- Incubation 2 to 5 years or longer?
 - Infectious load
 - Age at infection
 - Genetic susceptibility in sheep
 - Infected rams are dead-end hosts
Scrapie and Goats

- Are very susceptible to scrapie
- Cases usually seen in goats living with infected sheep
- In 2013, large goat dairy diagnosed with scrapie
 - After two years, CFIA believes they have traced the origin to sheep
- In 2016 a meat goat herd diagnosed with scrapie, no association with sheep or dairy goats
- In 2017, another outbreak in goats in another province

Scrapie – Genetic Resistance - Sheep

<table>
<thead>
<tr>
<th>PrP ARQ*</th>
<th>Red = susceptible</th>
<th>Green = resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>136</td>
<td>154</td>
</tr>
<tr>
<td>PrP VRQ</td>
<td>V</td>
<td>R</td>
</tr>
<tr>
<td>PrP AHQ</td>
<td>A</td>
<td>H</td>
</tr>
<tr>
<td>PrP ARH</td>
<td>A</td>
<td>R</td>
</tr>
<tr>
<td>PrP ARR</td>
<td>A</td>
<td>R</td>
</tr>
</tbody>
</table>

* Most common in nature

Little variation at 136 & 154 in North American sheep breeds

Scrapie – Genetic Susceptibility - Sheep

- VRQ / ARQ ★★★
 - Very very rare but very, very susceptible
- ARQ / ARQ ★★★
 - Very common and very susceptible
- ARQ / ARR ★★★
 - Common and moderately resistant
 - If lots of scrapie in flock, will express disease
- ARR / ARR ★★★
 - Used to be uncommon but genetic breeding programs seeking out these animals

- Ongoing work to determine genetics of goat scrapie
 - Not yet a clear picture and resistant genes appear very rare

Scrapie – Clinical Findings

- 2 to 5 years of age but as young as 6 months
- Are different presentations of scrapie
 - Pruritic
 - Ataxic
 - Paralytic
 - Wasting ***
Scrapie – Clinical Findings

- Early signs
- Nervous
- Separate from flock
- As disease progresses
 - Hypersensitive to noise
 - Dull / somnolent when undisturbed
 - Early only episodic
 - Teeth grinding and lip licking

Scrapie – Clinical Findings

- Increased “grooming”
- Intense bilateral pruritis
- Scratch test

Scrapie

Locomotor incoordination
- High stepping
- Stumbling
- Abnormal head carriage

Scrap - EU TSE Reference Centre

MAY 20 2002
Scrapie – Clinical Findings

- Not all forms present in all outbreaks

- Atypical signs
 - Regurgitation of rumen fluid
 - Rumen impaction
 - Apparent blindness
 - Cardiac arrhythmia

Goat Scrapie Case – Ontario 2013

- Terminally
 - Recumbent, coma
 - Course of disease weeks to months but end comes quickly
Scrapie – Laboratory Diagnosis

• Live Animal Tests
 • Biopsy of lymphoid tissue
 • Treatment with protease & monoclonal antibody for PrP + fluorescence
 • Rectal anal mucosal associated lymphoid tissue biopsy (RAMALT)
• Genome testing
 • Test for susceptibility, not disease
 • 7 mL EDTA blood

Scrapie – RAMALT Biopsy

Scrapie – Postmortem

• Sample obex - Canada
 • Rapid test to screen Animal Health Laboratory
 • Confirmed with histopathology and immunohistochemistry by CFIA
• If you suspect scrapie, you are obligated to report the case
• Surveillance
 • Active - Surveillance from scrapie certified flocks and at the abattoir
 • Passive - Canada - CFIA will pay for tests from sheep and goats with signs suggestive of scrapie
• National ID program
 • Allows trace-back of all positive cases to farm of origin

Scrapie Control - CFIA

• Initial investigation;
• Quarantine;
• Detailed investigation;
• Destruction, disposal and associated compensation;
• Cleaning and disinfection; and
• Surveillance testing for five years
• USDA has information on American Scrapie Eradication program
Scrapie – Canada and USA

- Currently sheep, goats and camelids > 12 months of age cannot enter the USA from Canada
 - Even if just crossing the USA to Mexico
 - Originally because of BSE risk (2003)
- Canadian cattle have been able to come for years now – why not small ruminants!
- We are hopeful the USDA will modify this – waiting for decision
- Canada has a national ID program
 - Mandatory for all sheep leaving the farm of origin since 2003
 - Will be mandatory for goats as of 2018 – voluntary now
- Canada has a voluntary scrapie certification program
 - For many years now
 - We have lots of low risk small ruminants for scrapie

Tetanus

- Presenting complaint
 - Lamb or kid ~ 2 weeks after surgery
 - Tail docking, castration, dehorning
 - Ewe or doe ~ 2 weeks postpartum
- Etiology
 - Clostridium tetani
- Clinical Findings
 - Tetanic spasms without blindness
 - Sensitive to noise, light
 - Mild bloat in adults with rumen motility
 - 3rd eyelid prolapse
 - Case fatality rate close to 100%

Copper Deficiency / Enzootic Ataxia

- Presenting Complaint
 - Lambs or kids develop posterior paresis but bright and alert
- Etiology
 - Insufficient copper in the diet
 - Excess molybdenum in the diet – more common
 - During pregnancy
 - Sometimes due to excess sulfur, iron
- Epidemiology (Ontario)
 - Rare but important to understand clinical presentation
 - Areas with high levels of molybdenum in soil
 - Usually several cases in flock or herd
 - Breed effect (like Cu toxicosis)
Copper Deficiency

- Clinical Findings
 - Congenital
 - Born weak, blind, down, tremours
 - Delayed***
 - Born normal
 - Onset of posterior paresis 4 weeks to 4 months of age
 - Adult
 - Anaemia, lameness, diarrhea, wool break, “spectacles”

- Laboratory Diagnosis
 - Serum copper levels < 0.5 ugm/ml
 - Liver copper levels < 20 ppm DW (< 200 umol/kg DW)
 - If test youngstock, may not reflect levels in the dam during pregnancy

- Necropsy Findings
 - Demyelination of cord
 - DDx
 - CAE, spinal abscess
 - Control
 - Once diagnosis is confirmed
 - Supplement with Cu

Parelaphostrongylosis

- Presenting Complaint
 - Camelids, small ruminants down, ataxic in the fall
 - Sometimes linear pruritis

- Etiology
 - Aberrant migration of deer meningeal worm

- Importance
 - Common in northern USA but usually recognized in Ontario in alpacas and llamas
 - Important DDx for other diseases causing posterior paresis or paralysis

Questions?